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Abstract

The inward source±sink ¯ow of a dilute suspension with an upper free surface, in a cylinder with a
horizontal solid bottom rotating about a vertical axis is analysed theoretically. The problem is made
unique for the prescribed volume ¯ux and outer radius by the requirement that the height of the
interface at the outlet (drain) radius is minimal. A small Ekman number of the global ¯ow and small
Taylor and Reynolds numbers for the ¯ow around the dispersed particles are assumed. The steady-state
¯ow-®eld in the mixture bulk is described by an inviscid shallow water approximation. In addition, the
in¯uence of the horizontal shear layer at the bottom is incorporated by an Ekman-layer correlation. It
turns out that in the investigated inward ¯ow con®guration, around the drain a domain may develop
where the entire transport is performed by the Ekman layer. Theoretical predictions for the height of the
¯uid at the outer wall (position of the source) for various angular velocities are found to agree well with
experimental results obtained earlier. The dispersed particles, assumed lighter than the ¯uid, separate
from the main ¯ow as a result of gravitational and centrifugal buoyancy. The numerical solution of the
particle transport equation surprisingly shows that the concentration of the particles increases with the
radius and, as expected, indicates the formation of a densely packed layer of particles on the top of the
suspension. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The understanding and control of particle laden source±sink ¯ows is very important in the
analysis of geophysical ¯ows and for the design of industrial processes, such as casting
equipment. In metal casting, for example, special vessels are used for the gravity separation of
light, solid impurities. Perturbations in the far ®eld of the in¯ow lead to the creation of
vorticity in many practical applications. The in¯ux transports this vorticity to the drain of the
vessel where it is usually concentrated as a strong local vortex, superimposing the sink ¯ow.
The resulting ¯ow is commonly known as ``bath-tub vortex''. Rotational e�ects such as the
formation of a viscous boundary region at the bottom of the vessel and the process of
centrifugal separation are expected to in¯uence the ¯ow and separation of the suspension
signi®cantly, as indicated by Mang et al. (1998). Other related Source±sink studies of
suspensions under centrifugal separation have been presented by Ungarish and Greenspan
(1986) and Dahlkild and Amberg (1994). However, in the present problem, a combination of
gravity and centrifugal e�ects, which has not been treated before to the best knowledge of the
authors, is considered.
Some aspects of combined centrifugal±gravitational e�ects on the ¯ow and separation of a

suspension are investigated in this paper. A solution is presented for the ¯ow-®eld and the
particle concentration in a rotating source±sink ¯ow of the type considered (for a pure ¯uid)
by Whitehead and Porter (1977).
The ®rst part of the study is concerned with the computation of the global ¯ow-®eld, with

separation disregarded. This is consistent with the practical assumption that the particle
concentration is not large and hence does not signi®cantly a�ect the driving forces of the
velocity ®eld. The analysis performed by Whitehead and Porter (1977) for a pure ¯uid serves as
the starting point for the investigation of the basic ¯ow inside the almost inviscid interior. The
surface of the homogenous ¯uid is open to the atmosphere where a constant pressure p�at is
assumed (Fig. 1). The analysis is limited to ¯ows in which the free surface is sucked into the
drain at the sink radius r�0: (Dimensional variables are marked by an upper asterisk.) This
limiting condition, termed condition of criticality, is used as a boundary condition for the
surface height at r�0: The present work extends Whitehead and Porter's approach by taking into
account the viscous boundary layer at the bottom of the container by an Ekman layer

Fig. 1. Experimental apparatus.
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approximation. The Ekman layer is expected to exert an important in¯uence on the basic ¯ow
as the rate of rotation increases. It is assumed that

Ek � n�

O�h� 21
� 1 �1�

where Ek is the Ekman number representing the ratio of viscous to Coriolis e�ects in the
global motion; here n�, O�, and h�1 denote the kinematic viscosity of the pure ¯uid, the angular
reference velocity, and the height of the free surface at r�1 (Fig. 1), respectively. This de®nition
is formally problematic because h�1 is a part of the presently unknown solution. However, the
physical meaning of Eq. (1) is, simply, that the layer of ¯uid is signi®cantly thicker than the
Ekman length �n�=O��1=2, at least near the outer wall.
The behaviour of dispersed particles in the above-mentioned ¯ow-®eld is considered in the

second part of the investigation. Because the density of the particles is smaller than that of the
embedding ¯uid, the suspension undergoes a process of separation caused by both gravitational
and e�ective centrifugal buoyancy. The suspended particles are assumed to be spherical and of
equal size and density. Furthermore, it is assumed that

Rep � U �a�

n�
� 1, Tap � O�a�

2

n�
� 1, �2�

with U� as the Stokesian centrifugal settling velocity of a single spherical particle of radius a�

in a ¯ow with the constant angular velocity O� at the radius r�1: The Reynolds number, Rep,
represents the ratio of inertial and viscous forces acting on a dispersed particle. The Taylor
number Tap represents the ratio of Coriolis and viscous forces on a dispersed particle. It
follows from Eq. (2) that the hydrodynamic drag force on a suspended particle can be
approximated by the Stokesian ¯ow result.

2. The source±sink ¯ow of the ¯uid

In the following, a theoretical model for the steady and critical withdrawal of a
homogeneous ¯uid from a cylindrical tank rotating with a uniform angular velocity about its
vertical axis, is developed. The problem is formulated in the cylindrical coordinate system
�r, y, z� that is co-rotating with the tank with angular velocity O� about the vertical axis z. The
velocity components are �u�, v�, w�). The density of the liquid is denoted by r�, the pressure by
p�, and the gravitational acceleration which acts in the ÿz direction by g�.
Axial symmetry is assumed. The model takes into account the e�ect of the Ekman layer on

the (almost) inviscid interior ¯ow. Inside the Ekman layer which is dominated by viscous
shear, the inviscid ¯ow inside the core is adjusted to the no-slip condition at the solid bottom
wall of the container. At high rotation rates of the tank, a signi®cant amount of the radial ¯ux
Q� is sucked into the Ekman layer, thus considerably a�ecting the core ¯ow.
Fig. 1 illustrates an experimental apparatus for the creation of such a ¯ow, following

Whitehead and Porter (1977). A basin B ®lled with water is mounted on a turntable which
rotates about a vertical axis. A cylindrical tank T with sidewalls made of a porous material is
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also mounted on this turntable. A pump P steadily feeds water from the basin into the
sidewalls of the tank. Thus, an axisymmetric radial in¯ux Q� of height h�1, independent of the
vertical coordinate, is produced at the radius r�1: The ¯ux is eventually withdrawn through a
circular hole of radius r�0 in the bottom of the container. A micrometer probe M with an
accuracy of20.05 mm was used to measure the surface height h�2 at a radius r�2 (slightly smaller
than the in¯ow radius r�1� for various values of O� and Q�:
Fig. 2 displays the ¯ow when the action of the Ekman layer at the bottom of the container

is included. The region of interest r�0Rr�Rr�1 is divided into two domains of di�erent ¯ow
patterns with a smooth transition between them. In domain a, the radial ¯ux Q� (negative in
the radial direction) is partly transported through the core and partly in the Ekman layer, as
follows

ÿQ� � 2pr�u�h� ÿ pr�v�
ÿ
n�=O�

�1=2
: �3�

Although the ¯ow is expected to be non-linear, the Ekman layer contribution to the volume-
¯ux transport (the last term) was taken into account by a linear Ekman-layer correlation. This
simpli®cation, however, is expected to be a fair approximation; as a justi®cation it is
mentioned that the linear Ekman-layer correlation is a good approximation of both von
Karman and BoÈ dewadt non-linear boundary layers on a disk (see Greenspan, 1968). Due to
angular momentum conservation, the azimuthal velocity v� increases as the radius decreases
(the details will be obtained later). Consequently, as the radius decreases, the radial Ekman
layer volume transport increases, i.e., while moving inward the ¯uid is also sucked into the
Ekman layer. According to Eq. (3) the increase of the second term is compensated by a
decrease of the radial volume transport inside the core; at some radius r�E the radial velocity
component of the core ¯ow, u�, vanishes. In the region of r� < r�E which is referred to as
domain b the entire radial ¯uid transport goes through the Ekman layer. In order to
distinguish ¯ow regimes with both domain a and domain b from ¯ow regimes in which no
domain b is formed, the former will be referred to as ``type a/b'' and the latter as ``type a''.

Fig. 2. Flow model with Ekman layer at the bottom. The ¯ow-®eld is of type a when domain b does not appear,
and of type a/b when both domains are present.
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2.1. Mathematical formulation

To facilitate the comparison of the present theory with Whitehead and Porter's experimental
®ndings, dimensional variables are used in the following section. The basic equations governing
the interior ¯ow are the equation of continuity and the Euler momentum equations. The
``shallow water'' simpli®cations are introduced, i.e., it is assumed that the axial velocity
component is much smaller than the lateral (radial) component, and it is important to consider
mainly the z-average motion in the core. The formal justi®cation for this approach is that the
height of the ¯uid layer is small as compared to its radius, h� � r�1: Moreover, in the rotating
case the velocity ®eld in the core tends to be z-independent even in a thick layer of ¯uid. (This
propensity, indicated by the Taylor±Proudman theorem in special limiting circumstances,
remains valid even for large deviations from solid body rotation in axisymmetric inviscid
steady-state bulks of ¯uid, because the small axial Ekman layer induced motion is unable to
support a substantial @p�=@z� beyond the hydrostatic ®eld.) It is emphasised that the layer of
¯uid in the ``shallow'' core is much thicker than the viscous Ekman layer at the bottom.
Under these simpli®cations the momentum balance in the vertical direction is approximated

by the hydrostatic balance which, on account of the free-surface condition p� � p�at � const:,
yields

p� � r�g�
�
h��r�� ÿ z�

�
� p�at: �4�

Furthermore, in the following analysis the radial and azimuthal velocity components are
represented by the corresponding z-averaged u��r�� and v��r��: The system of equations for the
motion in the inviscid domain is therefore reduced to the following.
Radial momentum balance,

u�
du�

dr�
ÿ v�

2

r�
ÿ 2O�v� � ÿg�dh

�

dr�
� O�

2

r�, �5�

where the ®rst term on the right-hand-side is the pressure gradient in accordance with Eq. (4);
angular momentum balance,

u�
�

dv�

dr�
� v�

r�
� 2O�

�
� 0; �6�

and the kinematic condition which expresses the fact that ¯uid particles on the free surface
z� � h��r�� remain there,

u�
dh�

dr�
� w��r�, z� � h��: �7�

In domain a, u 6�0 and hence Eq. (6) yields a relation for v� which can be easily integrated,
subject to the boundary condition v�1 � 0,

v� � O�r�1

�
r�1
r�
ÿ r�

r�1

�
, r�rr�E: �8�
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In domain b, u � 0 in the core and hence Eq. (6) is trivially satis®ed. In this case the angular
velocity in the core is obtained from the Ekman-layer transport correlation (3) with u = 0. It
readily follows that the azimuthal motion inside domain b is a potential vortex and that the
Ekman layer below this core is non-divergent (see e.g. Greenspan, 1968):

u� � 0, v� � Q�������������
n�=O�

p
p

1

r�
� K �

r�
, w��z� � 0� � � 0, r�Rr�E, �9�

where 0+ denotes the position of the ``edge'' of the Ekman layer.
The transition radius r�E is obtained by equating the expressions for the azimuthal velocities

in domains a and b, as given by Eqs. (8) and (9), respectively,

r�E �
�����������������������������
r� 21 ÿ

Q�

p
����������
n�O�
p

s
: �10�

The next task is to determine h(r ). Separate formulations are necessary for the rrrE and
rRrE domains, with matching at rE when applicable.
For rrrE, substitution of Eq. (8) into Eq. (5), integration and some arrangement, yield a

cubic equation for h��r��,

h�
3 ÿ h�

2

H ��r�� � 1

2g�

�
ÿ Q�

2pr�
�

����������
v�O�
p

2

�
r�

2

1

r�
ÿ r�

��2

� 0, r�ERr�Rr�1 �11�

where

H ��r�� � h�B �
u�

2

B

2g�
� O�

2

r�
4

1

2g�r� 2

 
r�

2

r� 2B
ÿ 1

!
; �12�

the subscript B denotes some reference position where boundary conditions are applied. For
dimensionless considerations it is convenient to use the outer wall, with subscript 1, as the
reference location, and introduce the scaling for the radius and heights as follows

r � r�

r�1
, h � h�

h�1
, H � H �

h�1
: �13�

With these scalings the dimensionless form of Eq. (11) becomes

h3 ÿ
�
1� Fr2 � Fr2O

�
1ÿ 1

r2

��
h2 �

"
ÿ Fr

r
� Ek

1
2FrO
2

�
1

r
ÿ r

�#2

� 0, �14�

where two Froude numbers appear,

Fr � u�1������������
2g�h�1

p , FrO � O�r�1������������
2g�h�1

p , �15�

which represent the ratio of the radial and azimuthal ¯ow velocity to the propagation velocity

J. Mang et al. / International Journal of Multiphase Flow 27 (2001) 197±215202



of a shallow water wave. This dimensionless formulation is, at this stage, less useful than could
be anticipated because the dimensionless parameters Fr and FrO depend on the surface height
h�1 which is unknown a-priori in the present analysis. However, an a-posteriori evaluation of
the parameters is instructive. In many cases of practical interest Fr (and also FrO� are small
parameters. Therefore, the following analysis is restricted to Fr < 1=

���
2
p
: The aforementioned

condition refers to the subcritical regime of the shallow water theory (not to be confused with
the condition of criticality which will be introduced in the next paragraph).
Only one of the the three roots of Eq. (11) is physically acceptable according to

straightforward considerations given by Whitehead and Porter (1977).
For the domain b, rRrE, v

� given by Eq. (9) is substituted in Eq. (5), and subsequent
integration yields

h��r�� � h�0 �
1

g�

242O�K �lnr�
r�0
ÿ K �

2

2

 
1

r� 2
ÿ 1

r� 20

!
� O�

2

2

�
r�

2 ÿ r�
2

0

�35, r�0Rr�Rr�E: �16�

Evidently, some boundary condition is needed for obtaining a unique result for h, in addition
to the given values of r�0, r

�
1, O

� and, Q�.
A condition of criticality is prescribed at the outlet and the ¯ow is studied under this limiting

condition. The condition of criticality for a ¯ow-®eld of type a �r�ERr�0� uses the fact that (14)
predicts a vertical tangent for h at a certain r � r�Fr, FrO�: In the regime of Fr < 1=

���
2
p

, h has a
positive slope. Considering also the equation of continuity d�urh�=dr10, it follows that the
hydrostatic pressure gradient acts as a driving force, accelerating the ¯ow as it propagates
inward. This acceleration must be compensated by a decrease of h, which in turn causes a
further acceleration of the ¯ow until eventually a point is reached at which the slope of h
becomes in®nite and no further acceleration is possible. Tracing the solution h(r ) from the the
outer wall r�1 to smaller radii it becomes evident that the interface hits the bottom at the critical
radius and the radial ¯ow becomes impossible. The required boundary condition is obtained by
identifying the sink radius r�0 with this critical radius:

dh�

dr�
� 1 at r� � r�0: �17�

Returning to (11) with the condition (17) it follows that h��r�0� � �2=3�H ��r�0� and therefore an
explicit result for H ��r�0� can be obtained. Consequently, using the known conditions at r�0, (12)
can be reformulated as

H ��r�� � 3

2g�1=3

"
ÿ Q�

2pr�0
�

����������
n�O�
p

2

 
r�

2

1

r�0
ÿ r�0

!#2=3

�O
� 2r�

4

1

2g�

 
1

r�20
ÿ 1

r�2

!
, r�0Rr�Rr�1: �18�

A unique solution for h��r�� is now possible by Eqs. (11) and (18). This, however, is valid only
when the domain b does not appear in the con®guration.
For the ¯ow of type a/b the radial volume transport near the sink, for any r�0 > 0, can be

performed by the Ekman layer without the need to increase the slope of the interface to
in®nity (the increase is now in the angular velocity). However, even in this case there is a clear-
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cut limitation on the value of h�1 for which a steady ¯ow ®eld can be reached with the sink
positioned at r�0: This can be simply de®ned by identifying the sink radius with the radius at
which no potential energy is left to push the ¯uid further inward. Thus,

h�
ÿ
r�0
� � 0,

ÿ
r�0 < r�E

�
; �19�

is the appropriate criticality condition for a ¯ow of type a/b. This is, of course, an
approximation ignoring the details of the expected thin and narrow viscous region where the
¯ux from the thin Ekman layer is diverted into the sink.
The unique solution of h��r�� is again available. Using (16) subject to the condition in (19)

yields readily h��r�� for r�0Rr�E: The value at r�E is then used to de®ne H ��r��, see (12) and recall
that u�E � 0, and solve (11) for r� > r�E:
In the following analysis the ¯ow ®eld is considered under the ``critical'' conditions imposed

by either (17) or (19), according to the type of ¯ow which appears near r�0: Whitehead and
Porter (1977) noticed an interesting correlation for the variation of the height of the interface
at a certain radius, say r�2, as a function of the angular velocity. They considered the inviscid
case (with no Ekman layer) i.e., ¯ow of type a in the entire radial domain. In this case the
comparison of H ��r�� given by Eqs. (12) and (18) with n� � 0 in the non-rotating �O� � 0� and
rotating circumstances, at the radii r�0 and r�2, leads to the conclusion that the combination h�2 �
u�

2

2 =2g
� varies like the last term of (18) with r� � r�2: Consequently, upon assuming Fr� 1 they

obtained

h�2 ÿ h�20 � �2O��
2
=C �, where C � � 8g�r�

2

0 r�
2

2 =
h
r�

4

1

�
r�

2

2 ÿ r�
2

0

�i
, �20�

and h�20 is the height in the non-rotating case. Thus, the height of the interface at the radial
position r�2 is expected to increase like O�

2

; moreover, the constant of proportionality depends
only on geometrical properties of the con®guration (not on the value of the throughput Q�).
To verify this prediction it is convenient to display experimental measurements of �h�2 ÿ h�20�C �
versus 2O� in a log±log plot, expecting a straight line.
However, when the contribution of the viscous Ekman layer is taken into account, as in the

present investigation, the behaviour of �h�2 ÿ h�20�C � versus 2O� becomes more complicated and
less universal: now it depends also on the value of Q�.

2.2. Results

Some results of the foregoing mathematical formulation are presented. The values of the
parameters are the same as those used by Whitehead and Porter. The values of Q�, the
geometrical properties r�0 � 4:8 cm, r�1 � 15 cm, r�2 � 13:8 cm, and the kinematic viscosity n� �
0:01 cm2 sÿ1 are as in Whitehead and Porter's experiment.
Fig. 3 shows a comparison on a log±log diagram of the theoretical predictions of the inviscid

model (no Ekman layer) and of the present model for the reduced surface height at the probe
radius vs. 2O�: Both theories agree very well in the range 0.5 sÿ1 <O�<5 sÿ1, which indicates
that the Ekman layer e�ect is very small. At larger values of O�, the present theory (full curve)
predicts that the Ekman layer e�ects cause the height of the interface to decrease (as compared
to the inviscid theory). This prediction is indeed in qualitative agreement with the experimental
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®ndings (open circles in Fig. 3). The curves corresponding to Eqs. (20) and (18) with K4 0 are
straight lines. They represent the asymptotic limits of large and small values of Q� compared to
p

����������
n�O�
p

r�
2

1 , because in the former case no domain b is formed and in the latter r�E tends to r�1:
The relative importance of the Ekman layer increases as Q� decreases. At very small values of
O�, the predictions of the inviscid and Ekman-in¯uenced models disagree again. Here,
however, both theories are expected to fail. In this range of parameters h�1 corresponds to the
thickness of the viscous Ekman layer and hence the assumption that an inviscid core exists,
i.e.,

������
Ek
p � 1, is violated. Indeed, the experimental results for O� < 0:5 sÿ1 are clearly above

the dotted curve (inviscid theory). Hence, the parts of the curves which do not satisfy
������
Ek
p � 1

(drawn as thin lines) are not covered by the available theories and should not be used for
assessing the validity of our analysis.
Additional information about the pertinent ¯ow ®elds is displayed in Figs. 4±7 and Table 1,

for four di�erent values of the angular velocity of the system O� and Q� = 0.136 l sÿ1.
Fig. 4 shows that the dimensionless surface height increases as the Ekman number increases.

Fig. 3. Predictions for ~h
��2O�� � C ��h�2 ÿ h�20 � and experimental data (Whitehead and Porter, 1977. A micrometer

probe with an accuracy of 20.05 mm was used to measure the surface height at radius r�2 (slightly smaller than r�1�
for various O� and Q �.

Table 1

Dimensionless parameters and ¯ow characterizations for various O�

O� (sÿ1) h�1 (cm) Fr FrO Ek Flow type

0 0.41 1.26� 10ÿ1 0 1 a
2.5 6.45 1.99� 10ÿ3 3.33� 10ÿ1 9.61� 10ÿ5 a
5 24.82 2.63� 10ÿ4 3.40� 10ÿ1 3.25� 10ÿ6 a=b, rE � 0:37
10 70.46 5.51� 10ÿ5 4.03� 10ÿ1 2.01� 10ÿ7 a=b, rE � 0:63
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As rotation becomes less important (Ek increases), less ¯uid is pumped through the Ekman
layer. Therefore, a higher amount of ¯uid has to be transported inside the core, leading to an
increase of the slope of the surface at small radii.
Fig. 5 indicates that the dimensionless Ekman layer radial volume transport Q�Ek=Q

�

decreases with Ek. Q�Ek=Q
� decreases with the radius and becomes 1 inside domain b. For the

non-rotating case there is obviously no Ekman layer transport at all.
Fig. 6 shows the negative dimensionless radial component of the core velocity ÿu�=u�1:

Except for the region close to the drain, the negative radial velocity increases with Ek. In the
case of a ¯ow of type a/b �O� = 5 sÿ1, 10 sÿ1) ÿu increases with r inside domain a and
vanishes as domain b is reached, whereas ÿu decreases with r in ¯ows of type a �O� = 0 sÿ1,

Fig. 4. Dimensionless surface height h(r ) for various O� and Q � = 0.136 l sÿ1.

Fig. 5. Dimensionless radial volume transport Q�Ek�r�=Q� in the Ekman layer for various O� and Q � = 0.136 l sÿ1.
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2.5 sÿ1). Near the drain, the curve corresponding to O� = 5 sÿ1 reaches much higher values
than the curve for the non-rotating ¯ow, because h is much smaller in the former case than in
the latter.
In Fig. 7 one can see that the dimensionless angular velocity v�=�r�O�� increases as the radius

decreases. Inside domain a, the dimensionless angular velocity does not depend on O�, cf. Eq.
(8). The deviation from solid body rotation (the e�ective Rossby number) is large. In ¯ows of
type a/b (dashed and dash-dotted curves), v�=�r�O�� deviates for r� < r�E from the long-dashed
curve representing ¯ows of type a. The radius r�E at which the deviation begins increases with
O�:

Fig. 6. Dimensionless radial core velocity component ÿu��r�=u�1 for various O� and Q � = 0.136 l sÿ1.

Fig. 7. Dimensionless angular velocity v�=�r�O�� for various O� and Q � = 0.136 l sÿ1.
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3. Particle transport

An initially homogeneous suspension is considered in an axisymmetric, rotating, source±sink
¯ow which incorporates the Ekman layer. Gravitational and centrifugal buoyancy cause the
suspension to separate. The problem is formulated using the mixture approach (Ungarish, 1993)
in which the suspension is regarded as a single ¯owing continuum with e�ective macroscopic
properties. The aim of the following analysis is to ®nd a solution for the volume fraction of the
particle phase, a, as a function of space and time. To distinguish between the properties of the
dispersed phase and those of the continuous phase, it is convenient to denote the former by the
subscript ``D'' and the latter by the subscript ``C''. It is also important to distinguish between
averaged mass velocity vectors, v�, and averaged volume ¯ux vectors, j�: An important new
variable is the relative velocity between the phases,

v�R � v�D ÿ v�C: �21�
The particle transport is governed by the volume conservation of the dispersed phase which
can be expressed (see e.g. Scha¯inger, 1990) as

@a
@t�
� �j� � �1ÿ 2a�v�R

� � ra � ÿa�1ÿ a�r � v�R, �22�

where j� is the volume ¯ux of the mixture. When the relative density di�erence between the
mixture and the pure ¯uid (the continuous phase) is small, the di�erence between j� and v� is
also small. Restricting the present analysis to this case, the calculation of the velocity ®eld can
be decoupled from the solution of Eq. (22). In other words, the results obtained for v� in the
previous section are used to represent the ¯ow-®eld of the mixture and the resulting behaviour
of the dispersed particles is analysed according to Eq. (22), subject to proper initial and
boundary conditions. Evidently, there is a strong relationship between a�r�, t�� and the variable
v�R, and it will be shown below that this variable can also be directly correlated to the velocity
®eld of the mixture.

3.1. Mathematical formulation

Dimensionless variables are de®ned by�
r�, h�, z�, u�, v�, w�, o�, t�

	 � �r�1r, h�1h, h�1z, U �u,O�r�1v, U �w,O�o, ÿr�1=U ��t	, �23�
with

U � � 2ea�
2

9n�
O�

2

r�1 �24�

as the absolute value of the Stokesian centrifugal settling velocity of a single spherical particle
at the radius r�1 in a ¯uid rotating with constant angular velocity O�: The velocity components,
using Eqs. (3) and (8), are
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j�a � v�a �

0BBBBBBB@
ÿ Q�

2pr�h�
�

������
Ek
p

2
h�1
O�r�1
h�

�
r�1
r�
ÿ r�

r�1

�
O�r�1

�
r�1
r�
ÿ r�

r�1

�
w�a

1CCCCCCCA, �25�

where the subscript ``a'' stands for ``domain a'' and w�a denotes the vertical velocity component
of the mixture ¯ow. Considering (2), a simple relation for the relative interphase velocity v�Ra

is
obtained from a balance between the local body force which comprises gravitational and
centrifugal buoyancy, and the Stokesian drag on a single spherical particle calculated with the
e�ective dynamic viscosity of the mixture m�eff :

v�Ra
� 2ea�

2

9n�
�1ÿ a�
m�a�

0BBBB@
ÿO� 2r�

�
1� r�1

r�

�
r�1
r�
ÿ r�

r�1

��2

0
g�

1CCCCA, �26�

with

e � 1ÿ r�D=r
�
C > 0:

The e�ective dynamic viscosity of the mixture is given as

m�eff � m�a�m�0 � �1ÿ a�ÿ3:1m�0, �27�
where m�0 denotes the dynamic viscosity of the pure ¯uid. (The correlation for m�a� introduced
here is commonly used; it can be replaced with other similar correlations without any
qualitative modi®cation of the results.)
An expression for the volume ¯ux vector j�b of the mixture inside domain b analogous to Eq.

(25), is obtained, using (9):

j�b � v�b �
0@ 0
K �=r�

w�b

1A, �28�

with w�b denoting the vertical velocity component of the mixture ¯ow in domain b. The vector
of the relative interphase velocity in domain b is given by

v�Rb
� 2ea�

2

9n�
�1ÿ a�
m�a�

0BBBB@
ÿr�

�
O� � K �

r� 2

�2

0
g�

1CCCCA: �29�

The vertical velocity components of the mixture ¯ow in both domain a and b are still
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unknown. They have to be derived by integrating the continuity equation in the respective
domains. At z = 0, the boundary conditions for the integration are given by the Ekman layer
suction and at z � h�r� they are given by the kinematic relation (7). As mentioned before, the
Ekman layer is non-divergent inside domain b. Integration of the continuity equation yields the
general result

w � c1�r�z� c2�r�: �30�
With the boundary conditions

wa � ÿ
����������
v�O�
p

U �
at z � 0,

wa � h�1
r�1
u

dh

dr
at z � h �31�

the dimensionless vertical velocity component of the mixture in domain a becomes

wa � A

(" 
B

2

�
1

r
ÿ r

�
ÿ Fr

g
1

r

!
1

h2

dh

dr
� B

1

h

#
zÿ B

)
, �32�

with the Froude number g as

g � U �������������
2g�h�1

p , �33�

and A � h�1=r
�
1 and B � ������

Ek
p

FrO=g:
With the boundary conditions

wb � 0 at z � 0,

wb � 0 at z � h, �34�
which follow from Eq. (9), the vertical velocity component of the mixture inside domain b
becomes

wb � 0: �35�
Substituting j�a, v�Ra

and j�b, and v�Rb
into (22) eventually yields a quasi-linear, hyperbolic,

di�erential equation of ®rst order for a�r, z, t�: This equation has to be formulated separately
for domains a and b. Non-dimensionalising the equations with the scaling parameters given in
Eq. (23) yields

@a
@t
�
"
ÿ Fr

g
1

rh
ÿ 1

r3
@j�a�
@a
� B

2

1

h

�
1

r
ÿ r

�#
@a
@r
�
�
1

A
wa � C

@j�a�
@a

�
@a
@z
� ÿ2j�a� 1

r4
�36�

for the particle concentration inside domain a, and
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@a
@t
ÿ r

�
1� D

r2

�2
@j�a�
@a

@a
@r
� C

@j�a�
@a

@a
@z
� 2j�a�

�
1ÿ 1

r4

ÿ
1� C2

��
�37�

for the particle concentration in domain b. In Eqs. (36) and (37) h follows from (11) and (16),
respectively, and

j�a� � a�1ÿ a�5:1: �38�
where g, A and B are as de®ned above and the additional dimensionless parameters appearing
in these equations are C � 1=�2Fr2O�=A2 and D � K �=�O�r� 21 ��2FrFrO=

������
Ek
p

, where K is de®ned
in Eq. (9). The initial conditions and boundary conditions for Eqs. (36) and (37) are

a � a0 8r0RrR1 and 0RzRh at t � 0, �39�
and

a � a0 8t > 0, at r � 1,

a � 0 8t > 0, at r0Rr < 1 and z � 0:

They represent homogeneous particle concentration within the whole domain at t � 0, and
in¯ow with the initial concentration, respectively. The boundary condition at z � 0 re¯ects the
assumption that the suction velocity of the Ekman layer is smaller than the velocity of gravity
settling. This requires the condition g=�Ek1=2Fr3O� > 1:
Eqs. (36) and (37) were solved by the method of characteristics. A fourth order Runge±

Kutta solver was used for integration. The particle concentration a�r, z, t� tends to a steady
state. Fig. 8 shows a sketch of the particle distribution at a particular moment within the
transient state. A domain of pure ¯uid (domain 1) develops at the bottom of the container. A
kinematic shock separates it from the mixture region (domains 2 and 3). This shock is
associated with the intersection of characteristic lines released with a � a0 at t � 0 and
characteristics released at the bottom boundary with a � 0 at t > 0: It represents the locus of
the ``last'' particles, i.e., the locus of particles which were initially in touch with the bottom
boundary. The shape and position of the shock front, which initially coincides with the
boundary, can be calculated by

Fig. 8. Regions of di�erent a during transitional state.
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@S
@t
� v�D � rS � 0, �40�

with S�r, t� � 0 as the implicit equation of the locus of the shock and v�D as the local velocity
of the dispersed phase on the mixture side of the shock. In the dilute limit, however, the
di�erence between the velocity of the shock front and the propagation velocities of
characteristics associated with a � a0 and a � 0, respectively, vanishes.
The mixture domain can be subdivided into a region in which a has already reached its

steady state (domain 2) and a region in which a is still time dependent (domain 3), as indicated
in Fig. 8. In the steady state region, a is determined by the characteristics emanating from the
sidewall. In the transient region, a is still determined by characteristics released in the interior
with the information of the initial condition. Because the e�ective centrifugal acceleration
causes the radial velocity of characteristics to decrease with r (uR decreases with r and a
increases with r; see Fig. 11), characteristics cannot ``catch'' and intersect other characteristics
released at smaller radii. Thus, the transition between the two regions (marked by the dashed
line) is continuous.
It follows from Eqs. (36) and (37) that a is independent of z along characteristic lines.

Because the initial conditions and boundary conditions at the sidewall are also independent of
z, the particle concentration in the whole region of interest is known, once a along the mixture
side of the kinematic shock has been determined. The particle concentration on the mixture
side of the kinematic shock is obtained from the aforementioned characteristics.
When the transient domain has shrunk to zero, a has reached a steady state within the entire

region of interest (Fig. 9). Note that the present approach does not take into account what
happens to the particles when they reach the free surface. It is assumed here that a stationary
layer of densely packed particles (referred to as amax-layer in the following) develops above the
mixture domain, as sketched in Fig. 9. A detailed analysis of the motion and stability of the
expected amax-layer is beyond the scope of the present investigation. However, a rough estimate
for a minimal radius rmin con®ning the amax-layer is obtained from a balance between gravity
and the centrifugal force acting on a particle at the surface:

dh

dr
� 2FrOo2r, at r � rmin: �41�

Fig. 9. Regions of di�erent a in steady state.
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Figs. 10 and 11 show the position z(r, t ) of the kinematic shock and the distribution of a�r, t�
on the mixture side of the shock at various times t, for Q� � 0:136 l sÿ1, r�0 � 4:8 cm, r�1 � 15
cm and O� � 5 sÿ1 �rE � 0:37). In Fig. 10 the curve with the label ``h'' represents the surface
and the curves with the labels ``t'' and ``steady state'' represent the kinematic shock. The shock
moves upward until it eventually reaches its steady state position.
The corresponding normalised values of a along the shock are given in Fig. 11. The

concentration pro®les show interestingly that the particle concentration increases with the
radius. Since a suspension of light particles is considered, the observed behaviour is
unexpected. In a rotating suspension of light particles one would rather expect a to increase as
the radius decreases. The reason for this unusual behaviour is that here the e�ective centrifugal
acceleration, which is controlled by the local swirl of the ¯uid, is di�erent from the classical
O�

2

r�: Consequently, more particles are withdrawn to the amax-layer than can be replaced by
the in¯ux with the initial particle concentration. This behaviour can be anticipated considering
the RHS of (22). For a suspension of light particles in solid body rotation vRAÿ CrÃr,
whereas, in the present case vRa

Aÿ �C=r�Ãr, where C is a positive constant. Consequently r � vR

is negative in the former case and positive in the latter case.
As O� increases, radial separation intensi®es, thus leading to a decrease of the pure ¯uid

region. The boundary between domains a and b appears as a point of non-smoothness in the
curves for the particle concentration (Fig. 11). In Fig. 11 at t � 10ÿ3 a second kink can be seen
at a smaller radius. The part of the curve on the left of this kink is given by characteristics
which were released within domain b. The right part is determined by characteristics released in
domain a. The vertical motion of the mixture caused by the Ekman layer suction and the
adjustment of the surface is negligible within the investigated range of parameters compared to
the vertical settling velocity of the particles. Thus, the position of the shock indicates only a
very weak dependence on the radius.

Fig. 10. Position of kinematic shock z � z�r, t� for a0 � 10ÿ3, Fr � 2:63� 10ÿ4, FrO � 3:40� 10ÿ1,
Ek � 3:25� 10ÿ6, g � 2:27� 10ÿ3, A � 1:65; B � 0:27, C � 1:58, D � 0:86:
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4. Concluding remarks

The velocity and volume fraction ®elds in a steady axisymmetric source±sink ¯ow of a
rotating suspension in the con®guration displayed in Fig. 1 were analysed theoretically. The
¯ow is ``critical'' in the sense that the height of the interface at the sink radius is minimal. The
in¯uence of the viscous layer at the bottom was incorporated by a linear Ekman-layer
correlation. It was found that for non-small rates of rotation, the Ekman layer exerts a
signi®cant in¯uence on the almost inviscid interior ¯ow; moreover, at small radii the entire
volume transport is performed in the Ekman layer. The suction of the Ekman layer causes a
reduction of the height of the ¯uid (as compared to predictions of an earlier analysis by
Whitehead and Porter (1977), which neglects all viscous e�ects). This result is in good
agreement with the experimental observations of Whitehead and Porter (1977).
The suspended lighter particles perform a complex motion since they are both convected by

the ¯uid motion as well as separated by centrifugal and gravitational buoyancy e�ects. The
transport equation for the particles was solved by the method of characteristics. It was found
that the volume fraction of the particle phase in the suspension domain has a steady state in
which a � a�r�: At the bottom of the container a region of pure ¯uid is formed which is
separated by a kinematic shock from the mixture domain. As O� decreases, the size of the pure
¯uid region decreases. The e�ective centrifugal acceleration, which di�ers from r, leads to the
unexpected result of an increase of a with r.
This study is based on several simplifying assumptions, such as the shallow-water

approximation, the Ekman-layer transport correlation and the decoupling between the ¯uid
and the particle motion. The combination of all these assumptions yields formally quite strong
restrictions on the practical parameter range of con®dent and accurate applicability.
Nevertheless, the physical insight gained is expected to be useful. Further studies should assess
the accuracy of the results by a more rigorous solution, requiring a large computational e�ort,
or by new experiments. Experiments are also expected to throw light on the last stage of

Fig. 11. a�r, t�=a0 along kinematic shock.
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motion of the dispersed particles (recall that the particles that separate from the suspensions
are transported to the open interface, but their motion afterwards could not be pursued by the
present investigation).
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